技術(shù)文章
近年來(lái),5G通信、新能源汽車(chē)、光伏行業(yè)推動(dòng)了第三代半導體材料碳化硅(SiC)技術(shù)的快速發(fā)展。相較于成熟的硅(Si)材料,SiC具有禁帶寬、擊穿電場(chǎng)高、電子飽和遷移率高、熱導率高等優(yōu)良的物理化學(xué)特性,是制備高溫、高壓、高頻、大功率器件的理想材料,如電力轉換器、光伏逆變器、射頻放大器、濾波器等。
SiC功率器件往往需要通過(guò)在SiC 襯底上生成所需的薄膜材料形成外延片,從而更易于獲得可控的晶體結構,更利于材料的應用開(kāi)發(fā)。隨著(zhù)外延生長(cháng)技術(shù)的進(jìn)步,SiC外延層厚度也從幾μm發(fā)展到上百μm,也從同質(zhì)外延發(fā)展為異質(zhì)等多種晶體。
對外延片品質(zhì)影響最大的是外延層的厚度以及電阻率的均勻性,因此在實(shí)際生產(chǎn)中對延片的厚度進(jìn)行測量是很重要的一環(huán)。
在硅同質(zhì)/異質(zhì)外延生產(chǎn)中,紅外傅立葉變換光譜技術(shù)(FTIR)是測試硅外延層厚度一種非常成熟的方法,具有準確、快速、無(wú)損等優(yōu)勢,非常適合工業(yè)化使用。因此在碳化硅外延厚度測定上也得到了應用,已形成了《GB/T 42905-2023碳化硅外延層厚度的測試 紅外反射法》標準。
儀器測試原理:襯底與外延層因摻雜濃度不同而導致的不同折射率,紅外光入射到外延層后,一部分從襯底表面反射回來(lái),一部分從外延層表面反射出來(lái),這兩束光在一定條件下會(huì )產(chǎn)生干涉條紋,根據干涉條紋的數量、折射率以及紅外光入射角可以計算出外延層的厚度d(原理示意圖如下)。
傅立葉變換光譜法測試外延層厚度原理圖
計算公式如下:
式中,d表示厚度,單位μm;M表示不同波數間的峰個(gè)數;n表示鍍膜材料折射率;θ表示入射角;,1/λ2 、1/λ1 表示波數。
采用FTIR配合顯微分析技術(shù),可避免損傷晶圓,實(shí)現SiC外延層厚度的測試。
島津IRXross+AIM-9000紅外顯微系統
對于SiC晶圓,外延層厚度理論值11 μm,測試不同位置(0~16號位點(diǎn))處的外延層厚度。樣品無(wú)需前處理,直接進(jìn)行顯微紅外無(wú)損測試。
樣品照片
樣品測試位點(diǎn)設定
觀(guān)察不同位點(diǎn)在2500~3500cm-1波段下的紅外光譜重疊圖,可見(jiàn)明顯的干涉條紋。
三個(gè)不同位點(diǎn)測試的紅外光譜圖
隨后分別測定了樣品標記的17個(gè)位點(diǎn),每個(gè)位點(diǎn)重復測試5次, 17個(gè)位點(diǎn)的厚度平均值為11.115微米,總的RSD值為2.13%,與理論值偏差1.05%。
17個(gè)位點(diǎn)的外延層厚度及其偏差
從不同位點(diǎn)外延層厚度結果來(lái)看,SiC晶圓外延厚度并非均一,呈現邊緣薄,中間厚的趨勢。